Cooperating Base Station Set Selection and Network Reconfiguration in Limited Backhaul Networks

Martin Dräxler (University of Paderborn & DOCOMO Euro-Labs, Germany)
Thorsten Biermann (DOCOMO Euro-Labs, Germany)
Holger Karl (University of Paderborn, Germany)
Wolfgang Kellerer (TU München & DOCOMO Euro-Labs, Germany)

12.09.2012
Introduction & Scenario

- Scenario: cellular network
 - Wireless access network
 - Coordinated Multi-Point (CoMP) transmission/reception (e.g. LTE-Advanced)
 - Joint processing (up 60% throughput improvement)
 - Multiple base stations (BSs) transmit data to a UE (user equipment)
 - BSs have to exchange synchronization information (→ latency?)
 - Transmitted data has to be present at all cooperating BSs (→ capacity?)
 - Wireline backhaul network
 - Passive optical networks (PONs)
 - Point-to-point links
 - Fixed topology
 - Network reconfiguration
 - Flexible capacity assignment (→ e.g. lightpaths, PtP links)
Problem: CBS Selection

- Cooperating base station set (CBS)
 - BSs participating in joint processing
 - 1 BS with controller role, n transmitting BSs (in total up to 5 BSs in urban scenario)
 - Constraints on (internal) capacity and latency

- Desired CBS
 - Derived from wireless channel properties
 - Removing BSs would decrease CoMP performance

- Feasible CBS
 - Feasible subset, according to backhaul network
Problem: CBS Selection

- Problem: some or all of the desired CBSs from wireless network may only be feasible as subsets in the wireline backhaul network.

- Possible solution so far: determine feasible CBSs from wireline backhaul network and limit possible CBSs to them.

- New solution: incorporate both wireless and wireline information in the CBS selection process

- Our new solution is threefold:
 1. Given the desired CBSs, determine feasible CBSs (may be subsets)
 2. Analyze infeasible BS
 3. Extend feasible subset by network reconfiguration
Feasible CBS selection

- Problem inputs
 - Backhaul graph (vertices V, edges E)
 - Edge annotations for available capacity and latency
 - Desired CBSs $W_i \subseteq V$
 - Vertex annotation for required capacity and maximum round-trip latency

- Problem outputs
 - Controller BS for each CBS W_i
 - Feasible subset of BSs for each CBS W_i
 - Information on infeasible BSs for each CBS W_i
 - Feasible routing paths within each CBS W_i

- Additional output: causes for infeasible BSs
 - capacity, latency or both
Feasible CBS Selection

- How to obtain the feasible CBSs?

- Linear optimization (MILP)
 - Optimal selection!
 - Long execution time, high memory usage

- CBS heuristic
 - Based on breadth first search (BFS)
 - Consider every vertex as potential controller
 - Determine potential routing paths by BFS
 - Select best candidate
 - Solution quality? Close to optimum?
 - Faster than optimization? Memory usage?

Detailed description in the paper!
Feasible CBS Selection

- Scenario: Mesh network, urban environment
- Cost models for CAPEX (equipment) and OPEX (energy consumption)
- Capacity demand at each BS d, UE radius r
- Details in the paper!
Infeasible CBS

- What to do if the complete desired CBS is not feasible? (= no feasible candidate for controller or infeasible routing)
 - Determine feasible subset
 - Possible with the heuristic → largest feasible subset
 - Likely decreased CoMP performance
 - Improve feasible subset by network reconfiguration
 - A larger subset will improve the CoMP performance
 - Ideally establish the full CBS

- Network reconfiguration
 - PONs: reassign wavelengths (WDM) or modify dynamic bandwidth allocation (TDM)
 - Enable additional microwave or FSO links
 - Network virtualization
(1) CoMP is required to fulfill service quality for UE
(2) determine desired CBS for UE based on wireless channel state
(3) use heuristic to determine feasible CBS
 • If the desired CBS is not completely feasible
(4) implement network reconfiguration
(5) Perform CoMP transmission/reception
Network Reconfiguration Benefits

- Scenario: Mesh network, urban environment
- Capacity demand at each BS d, UE radius r
- Key parameter: fraction of applied reconfiguration, suggested by the heuristic
- Result: linear relation between reconfiguration and feasibility
Network Reconfiguration Benefits

- Scenario: WDM-PON network, urban environment
- Capacity demand at each UE u, UE radius r
- Key parameter: number of UEs per BS
- Dashed lines: enabled network reconfiguration
- Result: network reconfiguration significantly increases CBS feasibility
Conclusion

- CBS selection method, including a fast heuristic, considering both…
 - … wireless characteristics (desired CBS)
 - … wireline characteristics (backhaul network)
- System architecture to integrate backhaul network reconfiguration into the CoMP process
- Simulative results

- Network reconfiguration can improve CoMP performance and helps to optimally exploit available backhaul network resources
CBS Heuristic

- **Maximum-Path BFS**
 - → start modified BFS from all vertices
 - output: BFS trees for all vertices

- **Intersect CBSs**
 - → intersect BFS trees and CBSs
 - output: candidate BFS trees for all CBSs

- **Back-Track BFS Trees**
 - → recheck constraints on candidate BFS trees
 - output: reduced candidate BFS trees for all CBSs

- **Intersect CBSs**
 - → recheck if BFS trees match CBSs
 - output: candidate BFS trees for all CBSs

- **Find Best BFS Trees**
 - → compare candidate BFS trees
 - output: one BFS trees for each feasible CBS

- **Analyze Graph**
 - → analyze infeasible CBSs
 - output: causes for CBS infeasibility
CBS Heuristic
CBS Heuristic
CBS Heuristic